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This paper presents a nonlinear modeling method for dynamic analysis of flexible structures 

undergoing overall motions that employs the mode approximation method. This method, 

different from the naive nonlinear method that approximates only Cartesian deformation 

variables, approximates not only deformation variables but also strain variables. Geometric 

constraint relations between the strain variables and the deformation variables are introduced 

and incorporated into the formulation. Two numerical examples are solved and the reliability 

and the accuracy of the proposed formulation are examined through the numerical study. 
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1. Introduction 

Structures undergoing rigid body motion as 

well as elastic deformation can be found easily in 

the engineering examples such as space structures, 

turbine blades and memory disks. The accuracy 

of the dynamic analysis results for these structures 

is very important since lighter and more flexible 

structures are needed to achieve more precise and 

less energy spending operations these days. 

For the dynamic analysis of flexible structures, 

several modeling methods have been introduced 

so far. The conventional linear modeling method 

(Bodley et al., 1978; Frisch, 1975; Ho, 1977) has 

been most widely used so far. This modeling 

method has several merits such as simplicity of 
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formulation and availability of the coordinate 

reduction technique (Hurty et al., 1971). How- 

ever, it often provides erroneous dynamic analysis 

results since it fails to capture proper motion- 

induced stiffness variation effects. To resolve this 

problem, several nonlinear modeling methods 

(Christensen and Lee, 1986; Simo and Vu-Quoc, 

1986) were introduced and the accuracy problem 

(that the conventional linear modeling method 

entailed) could be remedied. However, these 

modeling methods have the efficiency problem 

due to the non-linearity and the increase of 

degrees of freedom. 

More recently, a new linear modeling method, 

which is often called hybrid deformation variable 

modeling method, was introduced (see reference 

(Kane et al., 1987) ). This method is as efficient as 

the conventional linear modeling method and as 

accurate as the nonlinear modeling methods 

introduced in the above. However, in cases when 

boundary conditions induce significant mem- 

brane strain, the method provides inaccurate 

dynamic analysis results (see reference (Yoo, 
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1995)). The naive nonlinear Cartesian modeling 

method, introduced in Ref. Yoo (1995), could 

provide accurate results for the cases. However, 

the naive nonlinear Cartesian modeling method 

fails to provide accurate results when boundary 

conditions are not satisfied with the mode 

functions. 

The modeling method proposed in this paper 

resolves the problems of the naive nonlinear 

Cartesian modeling method and hybrid deforma- 

tion variable modeling method. The proposed 

method employs not only deformation variables 

but also strain variables to satisfy all kinds of 

boundary conditions. Those variables are appro- 

ximated by the assumed mode method and geo- 

metric constraint relations between the strain 

variables and Cartesian deformation variables are 

incorporated into the formulation. 

2. E q u a t i o n s  o f  M o t i o n  

In this section, equations of motion of a 

rotating planar beam are derived. Figure I shows 

the configuration of the beam before and after 

deformation. The beam rotates about one end that 

is reference frame A. The other end of the beam, 

even though it looks free to move in this figure, 

may be fixed to reference frame A for different 

boundary conditions. The distance, between fixed 

end and an arbitrary point P* before deformation, 

is x and the deformation vector of the point is 

denoted as ~. The velocity of point P, when 

reference frame A rotates with angular velocity 

~A, can be obtained as 

~"=  ~~  Ca~ X (X&+~) (l) 

where 9o is the velocity of point 0 that is fixed 

t l)r Pk:mn 

VN /" . 
I Io  P* 

' " 1 J I ;ndc fonwcd  I ~ a m  

RcfL'rcncc fi 'amc ,-~ ( 'on f igura tmn 

]Fig. 1 Configuration of a beam before and after 
deformation 

in the reference frame A and a~e is the relative 

velocity of the point P observed from the refer- 

ence frame A. By using the unit vectors (&, ~2, 

a) fixed to the reference frame A, each component 

of Eq. (1) can be expressed as follows: 

3 ~  UlgZl + 1.'z~2 (2) 

a~p = z21~1 + Z~2~2 (3) 

~a = (-/)3 a3 (4) 

12= u l&+ u2& (5) 

Substituting Eqs. (2)--(5)  into Eq. (1), Eq. (I) 

can be rewritten as tbllows: 

~ P =  [ Vl-~- Z~I-- W3U23 a l  
(6) 

+ [~2+ us+ oJa(x + Ul) ] & 

By using the velocity expression, the kinetic ener- 

gy of the beam (neglecting rotary inertia effect) 

can be expressed as follows: 

T = l  foLp(~P)Sdx (7) 

where p represents the mass per unit area of the 

beam and L is the length of the beam. Also, 

assuming that shear and torsion are neglected, the 

strain energy of the beam is expressed as follows: 

Where E denotes Young's modulus, A is the 

cross-sectional area of the beam, I represents the 

second area moments of the cross-section, and eu 

and ~ represent the extensional strain and the 

curvature at point P on the elastic axis of the 

beam. Here, Von Karman strain is used for en. 

The bending non-linearity, however, is not 

considered in this work. Thus, r and Ks are 

expressed as follows: 

1 . 2 r (9) 

*ca= u2,= (10) 

where ( ),x represents the partial derivatives of ( ) 

with respect to x. 

In the present study, Cartesian variables (u,, 
us) are employed to express the elastic deforma- 

tion vector. Conventionally, the two Cartesian 

deformation variables are approximated to obtain 

ordinary differential equations of motion. In the 

proposed method, however, not only ul and u2 
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but also ~1i and ~ca are approximated by employ- 

ing the mode approximation method as follows: 
,Ul 

/,(1 = i_~l ~1  i q l  i I 1 )  

722-~ ~ r  12) 
i=l 

r ~= ~fiiPli (13) 

Y2 
K.~ = E ~2i1%i (14) 

i= l  

where r Czi, P~i, and Ik2i are mode functions, 

qli, q2i, Dli, and /%i are their corresponding 

coordinates, ~ ,  ~z, ~'~, and ~2 denote the numbers 

of the coordinates for ul. Uz, r and ~ca, respec- 

tively. In this study, r and r are chosen from 

the stretching and the bending modes of the beam 

and r and !kz~ are the first derivatives of the 

stretching modes and the second derivatives of the 

bending modes. 

Substituting Eqs. (I I) -- (14) into Eqs. (7) and 

(8), the kinetic energy and the strain energy are 

expressed as follows: 

T:12~LO[(~21+~i~=l~liqli--O)3~)2iq2i) 2 

(15) 
§ ( P2-- ~i~= r + o)a( x + ~ r ) ) 21dx 

dx(16) 

Similarly, Eqs. (9) and (10) are expressed as 

follows: 

Vl ~ll r162 [ [ ~2 
XC~.p.= Er X ~ l  ~r / (17) 
i = 1  / = 1  i = 1  - -  \ 

V2 P2 
E ~2,Pz, = E Cz,,xxqz, (18) 
i= l  i=1 

Eqnations (15) and (16) show that kinetic energy 

is the function of q~,-, qzi, 0ti, 021 and the strain 

energy is the function of pl~ and ~ which are 

additionally introduced to approximate ~H and 

,'ca. By using Hamilton principle (see, Ref. Golds- 

tein (1980)), the following equations of motion 

can be obtained. 

d{ TI  ,OV 
aq,, dt-taO~,,l-~:,~ Oq,, ~=,Ola~ ~ (19) 
OT d ( 07"1_ ~ ~V ~PI, ~ 3V 31~=0 
3qzi dt \ Oit2i / ~ Opt, Oq~ ~ 3P~ ~ (20) 

As shown in Eqs. (19)~(20) ,  since the 

coordinates Pli and ~ are irrelevant to the kinetic 
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energy, terms associated with the kinetic energy 

are identical to those of the naive nonlinear 

Cartesian modeling method. The procedure to 

obtain the terms associated with the kinetic ener- 

gy is straightforward and well explained in Ref. 

Yoo (1995). So, only the procedure to obtain 

terms associated with the strain energy will be 

explained here. First, the partial derivatives of the 

strain energy with respect to Plh and P2k are 

expressed as |bllows: 

_ /00 3P, k E A  ~lsCr~kdx p~s (21) 

3 V _~__~fo LE i ~ 2 k d x l ~  ( ~ ) 

Equations (21) and (22) are expressed as the 

function of mode coordinates (Plk, / ~ ) .  These 

equations can be rewritten as the function of 

generalized coordinates (qli, qzi) by using Eqs. 

(17) -- (18). Multiplying Eq. (17) and Eq. (18) 

by EAfsI~ and EIO2h respectively and integrating 

with respect to x, 

~ fo LEA ~,k r MxPl~ 

: f~=~ fo LEA #,k~,~.xdxqlj (23) 

~z P2 L 
+ I x  X f EA~lkCzj,~r 

Z. j = l m = l d 0  

(24) 

Thus, Eqs. (21)~ (22) can be rewritten as follows: 

= EA~lhr 3p1~ = (25) 
l , z  ,~ FL 

+ ~  ~ I EA fsI~r162 
j=lm=ldO 

-- EI~2k Czs xxdxq2s (26) 

Employing Eqs. (25)~(26) .  Eqs. (19) and (20) 

will provide the equations of motion as follows: 

Pl /-'z 
(s - -  (J-)3 ~9) R l i - -  2 I 1 "  ' 12 . 0)3 Sli+~,misqlj-w3"~,misq2s 

J=l j=l 
92 Pl 

12 �9 2 11 
- -  2og3~ . .m i jq2 j - -  (l)3 ~,,?Jqijqlj 

~=1 s=~ (27) 
Pl Pl P2 P2 \ 
X ( ~ ,  ' 11 l ~ , , Z  122 ) 11 + A~qls+ A~mqz~q2m " C~i=O 
k = l \ j = l  j= lm=l  / 

(i=1, 2, 3, ..., ~1) 
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P2 Pl 
( ~ 2 + ~ o 3 ~ )  22- �9 21 R2i- (o3S2~ + Z m~jq2~ - co3 52. m~j qu 

J=I  j = l  

,u~ tt2 
2 21" 2 22 + r.Os'~,'mi~qlj--(03 ~.mijq2~ i=1 j=l 

P2 P2 ) 
= (281 

/dl Pl  P2 P2 
11 l 122 12 _ _  + ( 2A q, r, C ,-O 

k=l\j=l Z j = l m = l  / 

(i=1, 2. 3, ..., Zz) 

where, 

R~-~ foLpr (29) 

S~f-  fo Lpxr (30) 

mTf= fo Lp r (3 I) 

AIJ = foo LEA ffx~r (32) 

2 2 - -  L 
A u =  fo Elr162 (33) 

L 
AI22-- u~= fo EACttiCz.i, xCz~,.,cdx (34) 

C5~_ aPa, (35) Oq~ 

Here, Cff  can be obtained from the following 
equations which are the partial derivatives of Eqs. 
(23) and (24) with respect to q~i and qzi respec- 
tively. 

~K~ s C ' - - A  ~ �9 ~ i - -  ~i (36)  
k = l  

u l  S P2 
�9 C m - -  Y] (37)  A jmi qzm 

k = l  ~ = 1  

I., 2 

5-I, ~ ~ ' -  �9 C~i-O (38) 
h = l  

1,'2 
~,Is r',ze_Azz (39) 

�9 k ~ k i  - -  ~ j i  
k = l  

where, 

K; s =-- fo LEA ff, gff, Mx (40) 

K~5 = EI#zi~,'e~dx (41) 

3. N u m e r i c a l  R e s u l t s  

In this section, by using equations of motion 

derived in the previous section, numerical ex- 

amples are solved and the results are compared 

with those of other modeling methods. The first 

example, shown in Fig. 2, is the cantilever beam 

T a b l e  

Notation: 

p 

E 

A 

Numerical data used for tile simulation 

Description 

Mass per unit length of 
beam 

Young's modulus of 
beam 

Cross section area of 
beam 

Numerical data 

1.2kg/m 

7.0El0 

4.0E-4m 2 

Second area moment of 
I 2.0E-7m 4 

inertia of beam 

L Length of beam 10m 

Q s Steady state angular 6rad/sec 
velocity 

Ts Time to reach the steady 15sec 
state angular velocity ] 

Fig.  2 Configuration of a rotating cantilever beam 

attached to a rigid base that undergoes a planar 

rotational motion. This rotational motion is often 

called the spin-up motion that is given as follows: 

{ a ~ [ t _ / T s \ .  12~rt~l 
oJ3= TsL ~ 2 z ) s , n ~ s / j  i f 0 ~ / g T s  (42) 

Qs if t2  Ts 

where O s denotes the steady state angular veloci- 
ty, Ts denotes the time to reach the steady state 

angular velocity, and t denotes time. Numerical 

values used tbr this example are given in Table I. 

Here, r and r respectively represent the 

stretching and the bending modes of the beam; 

and ~ i  and ~k2~ respectively represent the first 

derivative of the stretching mode and the second 

derivative of the bending mode. 

Figure 3 shows the lateral displacement at the 

free end of the cantilever beam. Here the 

simulation results obtained by the proposed 

modeling method are drawn by the solid line, 

those obtained by the NNC (naive nonlinear 

Cartesian) modeling method are drawn by the 

broken solid line, and those obtained by the HDV 
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0.1. 

-Ol- r 
O) 

E -02-  
IJ  �9 
m 

1 .o, V ...... .~ ~ [ . . . .  H.D.V Modeling Method 

-0.6 
o ; 1'o 1; 2; 

T ime  ( sec ) 

Fig. 3 Comparison of lateral displacements of can- 

tilever beam at free end 

(hybrid deformation variable) modeling method 

are drawn by the dotted line. For this problem, 

the natural boundary conditions introduced by 

the NNC modeling method cannot be satisfied no 

matter what mode functions are employed. As 

shown in the Fig. 3, the NNC modeling method 

provides incorrect results that are often named as 

membrane locking phenomena. The simulation 

results obtained by the proposed modeling meth- 

od are almost identical to those obtained by the 

HDV modeling method. In this case, the accuracy 

of the HDV modeling method was verified in Ref. 

Yoo (1992). 

Another numerical example, shown in Fig. 4, 

is the simply supported beam attached to rigid 

base that undergoes a planar rotational motion 

with angular velocity given in Eq. (42). Here the 

length of the beam is 20m, other numerical values 

used for the simulation are identical to the first 

example. 
Figure 5 shows the lateral displacement at the 

middle point of the beam. Unlike cantilever beam, 

simply supported boundary condition usually 

induces significant membrane strain if the lateral 

displacement is larger than the thickness of the 

beam. The figure shows that the HDV modeling 

method fails to capture the membrane strain 

properly and results in incorrect solutions. On the 

other hand, the results obtained by the proposed 

modeling method are almost identical to those 

Fig. 4 Configuration of a simply supported beam 

0 1 0 -  

E oo5- 

~ 0.00 
u 
"~ -0.05 

- 0 1 0 .  

-0.15 

-020 

Fig.  5 

- -  Proposed Method 
. . . . . .  H.D.V Modeling Method 
. . . . . .  N.N.C Modeling Method 

i I"1 

Time ( s e c )  

Comparison of lateral displacement of simply 
supported beam at the middle point 

of NNC modeling method�9 The accuracy of the 

results obtained by the NNC modeling method 

was verified in reference (Yoo, 1995)�9 

4. C o n c l u s i o n s  

A nonlinear modeling method is proposed for 

the dynamic analysis of flexible structures under 

going overall motion. Not only Cartesian defor- 

mation variables but also strain variables are 

employed in this modeling method. With the 

mixed variables all boundary conditions can be 

satisfied while geometric relations between strain 

variables and deformation variables are incorpor- 

ated into the formulation. The reliability and the 

accuracy of the proposed modeling method are 

verified through the numerical study. It is found 

that accurate dynamic analysis results can be 

obtained with the proposed modeling method for 

two examples that have two distinct sets of 

boundary conditions. 
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